
Senior

N90-27315

OBJECT ORIENTED FAULT DIAGNOSIS SYSTEM

FOR SPACE SHUTTLE MAIN ENGINE REDLINES

John Rogers Saroj Kumar Mohapatra.

Research Associate Graduate Research Assistant

Johnson Research Center

University Of Alabama In Huntsville

A great deal of attention has recently been given to Artificial Intelligence research in the area
of computer aided diagnostics. Due to the dynamic and complex nature of space shuttle red-line
parameters, a research effort is under way at the Johnson ,Research Center on the campus of
UAH to develop a real time diagnostic tool that will employ historical and engineering rulebases
as well as sensor validity checking. The capability of AI software development tools (KEE & G2)
will be explored by applying object oriented programming techniques in accomplishing the
diagnostic evaluation.

What is an Exvert System?

In its simplest sense an "Expert System" is a system which can handle any domain limited
situation as efficiently as a human expert would handle it. The keywords here are domain limited

and human. Here is a simplified example. It might be easy to conceptually perceive a system that
handles the breaking mechanism in an automobile. Now suppose these brakes are hydraulically
activated as are some of the brakes in large trucks. If the system suddenly lost pump pressure due
to some type of power system failure, the system should be expected to determine the element in it_
system (namely the pump) was malfunctioning, but probably would not be able to totallx
diagnosis the problem as a power failure. The power system is a separate entity in the automobile
and therefore does not fall into the hydraulic systems limited domain. Theoretically the domain ot
an expert system may be as large as the designer desires; however, the larger the system domain.
the larger the knowledge base requirements and the more complex the inference engine.

The second keyword, human, details the performance requirements of the system. The
system must be able to handle a situation that exists within its limited domain as efficiently as a

well trained expert in the field. Though it can not be has not yet begun to reach its size or pattern
matching potential. Also, since the system is currently operating as a stand-alone system and no
sensor input is available, simulation and data file supplied values are driving the system. Output is
restricted to operator notification and suggested corrective procedures by the system. Scan
Intervals are well within one second, yet far from the ultimate goal. These limitations are bein_
slowly reduced and eventually it is hoped they will be removed entirely.

PRECEDING PACE BLA,:X I_'_CTT:LMED

361

expected to determine the faulty power supply, a properly designedexpert systemshould
immediatelyidentifythepumpasthesourceof the localizedproblem.Of course,thesystemis not
doinganythingthatahumancannotdo. But for largeproblemsthatinvolvemanyparametersthe
system,if properlydesigned,canreachtheconclusionmuchfasterandfreethehumanexpertto be
accomplishingothertasks.

CREATING AN EXPERT SYSTEM

An expert system has three major modules. These are the systems interface with its
environment, the knowledge base of rules and information governing the system, and the user
interface.

_nvironn_Fl!

Figure 1

Each of these modules plays an important role in the operational efficiency of the overall
system, ff the interface between the environment and the system is inadequate the system will be
unable to properly monitor the environment's condition. If the knowledge base is not complete or
contains erroneous information the system will reach improper conclusions. And finally the system
must be designed so it is easy for the individual to use. Each of these topics will now be
presented.

Interface between the System and lh,_ Environmcnl

Depending upon the type of expe_ system under development the interface between the
environment and the system may take on different forms. For example, if the system is being
designed to maintain certain operating parameters in a particular piece of computer software, the
interface may include a communications protocal between the two machines (if they are in ta,. t
located on separate machines). Or possibly for a mechanical system, the interface between the
mechanism and the expert system monitoring it may be a connection to an analog converter that
takes in raw sensor voltages and converts it into meaningful data. Any combination of these fore>
is possible. In different systems throughout industry a variety of interfaces have been designed to
fit the needs of the application.

Regardless of the type of interface, the primary objective is to have as complete a
communication between the environment and the system as possible. Erroneous results would be
produced by a system that has the potential of functioning properly due to simply bad input data
What- ever needs to be included in the interface to insure this communication clarity must be
included. Obviously this is a critical necessity for the system and must be satisfied in order for it to
monitor the environment correctly.

It is the job of the knowledge engineer to acquire a complete set of facts and rules thai
govern the environment. This is accomplished in a variety of ways. First, many processes follo_
a given set of engineering and natural laws. The applicable formulations of these laws can be

362

incorporatedinto the system. Previousor historical datacanbe interpretedand stored. And
learnedandexperiencedindividualsca__._!!_interviewedto gainfrom theirknowledge.

Theinterviewmethodis themostdifficult to perform,but oftenthemostbeneficial. It is
easyto seehowvaluable it is to haveexperiencewith a certaintypeof problem. Many timesa
processcanbecompletedrather routinely by an individual, but it is time consuming and takes the
individual away from other much needed tasks. This is a perfect example of where the interview
method would readily apply. However, the familiarity with the problem can become a mixed
blessing. Crucial steps in the performance of a task become routine to the expert and might be
omitted in the performance description. Therefore leaving the system designer with an inadequate
instruction set.

Knowledge Base

Perhaps the most difficult task facing the developer of an expert system is constructing the
knowledge base. The knowledge base is a collection of facts and associated rules (sometimes
called the rule base) that are connected with the environment of the expert system. These rules and
facts are based on information gathered by a process called Knowledge Engineering.

Most tasks that humans perform are complex in nature, yet they seem quite simple to the
individual. For example, consider the everyday activities that an ordinary individual might find

themself doing such as brushing their teeth, getting dressed, or preparing a meal. Certainly most
of us know how to perform each of these simple tasks quickly and easily; however, it is not quite
as simple a problem to describe or explain all of the steps that are involved. If one of the steps is
omitted the total process is likely to fail. This knowledge engineer must familiarize himself with the
envirnment that is being monitored. Only then can a successful dialog between himself and the
experts occur. It is his responsibility to question these experts in a manner such as to gain a
complete set of facts and rules governing the specific environment.

U_gr Interface

The user interface is the individuals gateway to the expert system. One of the most often

heard complaint about any software package is the inadequacy of the user interface. A user
interface should be as simple to use: as possible, yet have the flexibility to allow the operator the

ability to handle virtually any situation.

There are many different formats for the user interface. It can be menu driven or allow for

command input lines. It might include mouse sensitive items, help documentation, and meaningful
error messages for the user. Any or all of these items can help to make a quality user interface

However, remember the most important aspect is usability.

Current Annlication -
S.S.M.E. Redline Diagnostics

The current application involves the monitoring and diagnostic analysis of a group of flight
parameters for the Space Shuttle's main engine known as the redlines. These parameters include
the High Pressure Oxidizer Preburner discharge intermediate seal purge pressure, the High
Pressure Oxidizer Turbopump turbine discharge temperature and secondary seal cavity pressure,

the High Pressure Fuel Turbopump turbine discharge pressure, High Pressure Fuel Preburner
coolant liner pressure, and the Preburner shutdown purge pressure.

This system is divided into three subsystems: a monitoring system, a rule based diagnostic
system, and a historical data base of past performance. Each plays an important role in emulating
an expert in the identification and evaluation of possible operating problems.

363

The monitoring system is similar to those in place in many applications around the globe. It
receives sensor data that it compares to a gjv_a set of parameter limits. If the data falls within the
acceptable range for each of the redline parameters, then opeations continue unaffected. However,
if the data does not remain confined between the operational limits, flags are set which indicate a
problem has occurred. At the completion of a given cycle of data entry, these flags are examined.
If they indicate possible problems the diagnosis procedure is initiated.

The diagostic system is a rule based system that forward chains or background chains
through a set of rules and hopefully arrives at a possible conclusion for the situation. For the

SSME redlines these rules consist of engineering and interparameter relationships which must be
maintained. As a conclusion the system may either initiate an attempt to correct the situation and/or
report the probable causes and siggested ways to proceed to the operator.

The diagnostic system should also have a built-in mechanism for validity checking on data.
This is accomplished in this system in two ways. The rule base has certain rules which define

physical laws. If according to these rules all but one dependant parameters abide by these laws or
if data trends for parameters like pressure and temperature exhibit sporadic almost non-continuous

behaviour then there existsd a high probability that the sensors are not functioning properly.

The third sub-system involves pattern matching current data to past experiences. This give.,,
the system a type of historical prospective on the current events and may indicate the cause of the
current situation based on the causes of the similar historical event. This sub-system is initiated
only if the diagnostic subsystem was unable to arrive at a plausable conclusion. If initiated,

however, the current events are compared to a data base of past events and a ranked list of possible
situations along with a weight factor that describes the degree of parameter matching is returned.

Prototvoe Develonment

The original system was prototyped using a software development tool named KEE
(Knowledge Engineering Environment) which is a product by Intellicorp. It was menu driven and
used graphical displays to relate the information to the user. KEE proved to be a good starting
place for the early development. However, time is of primary importance in this system. Each
scan interval for the system is desired to be less than 60 microseconds. Therefore, an alternate

method had to be explored. G2, a real-time expert system, software development tool developed
by Gensym, was selected for the second development.

Ef.lla£_i,.s_F_

G2 is an advanced tool for developing real time expert systems. Real time expert system._
are programs that can respond intelligently to events as they occur. The need for such systems is
evident in the process and manufacturing evident in the process and manufacturing industries,
telecommunations, medical care, aerospace, robotics, and so on. At the heart of G2 is its ability to
do the following:

.G2 can scan an application (like an human operator) and can focus on key areas when it detects
potential problems or oppertunities.

.G2 can control events in a continuously changing application. This is possible because of a real
time inference engine that can maintain validity intervals and history for variables.

.G2 can respond to events when they occur (without having to continually poll sensors, for
example.)

364

.G2allowstheapplicationexpertsto createprototypesrapidlyusingstructurednaturallanguagein
anintuitive,graphicallyorientedenvironment.

Idea of developing a expert system using G2

To use G2, the developer first _bes each class of object in the application, what it
looks like, and what its attributes are. After describing the classes of objects that are found in the
application, the developer can create a model of the application by placing objects on a workspace
and connecting them to show their relationships. Associated with each object is a table that
describes the object. G2 automatically creates this description from the definition of the object
class. After drawing the schematic, the developer writes rules that indicate how to respond and
what to conclude from changing conditions within the application. The developer enters these rules
and all other statements within G2, in structured, natural language using a context-sensitive editor
that guides him through each part of the grammar.

When the knowledgebase is running, G2's real time inference engine uses the rules,
together with data that it receives from the data server (the sensor, G2 simulator, and other external
sources) to infer how to respond to conditions.

The data server attribute indicates where G2 should go to get values for the variables. The
inference engine scans key rules at rates associated with each rule. It focuses on key objects b_
trying rules associated with the objects. The inference engine invokes rules of a particular categor2,
for a particular class of objects. It backward chains to other rules to find values and forward chains
to rules when values are found.

The knowledgebase uses the G2 simulator to simulate values for sensors and other
variables while the knowledge base is running. It can solve algebraic difference and first order
differential equations.

The developer also can create operator controls like check boxes, radio buttons, and action
buttons that an operator will be able to use to enter values or to give instructions to G2. The
developer can create displays like graphs, dials, meters or readout tables.

The development of a knowledge base usually proceeds incrementally. To develop a full.
sized application, he proceeds in stages, at each state refining the prototype, adding a little more to
the knowledge base and testing the result. After the knowledge base is built, the developer c,_1
interface to an application using "Gensym Standard Interface." The expert system can then rece_ c
values from sensors or other sources, set the values of setpoints, write to databases, and so on.

Example of- G2 Redline Implementation

The project required implementing eight parameters: Preburners S.D., HPOP (High
pressure oxidizer pump), HPOT (High pressure oxidizer turbopump), HPFT (High pressure fuel
turbopump), HPFP (High presusre fuel pump), LPOP (low pressure oxidizer turbopump), LPFP
(Low pressure fuel turbopump) and POGO. After creating a workspace those redline parameter>,
are implemented using different kinds of objects(Figure 1). A superior class object is defined so

that redline parameters can inherit its attributes whenever they need.

365

Figure 2

G2 hasthecapabilitiesto createtables(Figure 3) for each object For example in Figure 3, HPOT
is the object and the table has user restrictions, where the user can describe the restrictions needed
for HI_T;.HPOT is the class for which also the superior class is redline parameters. Attributes

specific to.the class HI_T are discharge-temp (a quantitative variable), sealactivity pressure (a
quantitative variable), OK (a logical variable), and high (a logical variable). The capabilities and
restrictions of HPOT are "none", change is "none", and menu option is "final menu choice." In
this case no attributes are inherited, so inherited attributes get the value "none." Default settings for
variables are also "none." Notice the attribute stubs in Figure,3. There is a water line output-port
located at left 20; a connection input-port located at right 20. To use the connection between the
instances of objects the user has to define an object called water-line or instrument line. So as
shown on Figure 3 the instrument signal and water-line are defined. The user can define an

instance out of the objects. The last four attributes describe the icon which is used to display the
instance of the object HPOT and can modified to the designer's specifications.

i hi _wlll Oll_

W

m_ m_w m aam d_elm_ • 1pro W i

mmmnlodmWlm no_ R o

_ _l gin,inW
o_ ell_umlo

_lgm_No

_ e _ m mmuO

_Wlm mum

e _4_ WWlm*

ae*gm 1

ap_pu M

MM, I ol _ em_b N qll laL

J II Ill

CeNr, I

Figure 3

After creating the instances of objects, the user can see the table for that instance b_

selecting it with the mouse, that is automatically created by G2 like Figure 4. For each attribute in

366

f_ FOUR QLI_LIT_

the table, simulation details can be written on a specific subtable. The use can get a value for any
attribute using the G2 simulator, the inference engine, or from outside files and sensors. After
considering where to get values for all the attributes of the instances, the user can write rules on the

workspaces attached to object definitions, the instances, and G2 itself like the example given below
for HPOT. Each rule has its own table and G2 scans keyrules at rates associated with each rule.

For example in the figure 4. I, the scan interval is one second. The scan interval provides a way to
regularly invoke a rule to monitor an event. The value of the scan interval tells G2 how often to

invoke the rule. The user can follow rule f'u'ing path since everytime G2 f'tres a rule using forward
chaining or backward chaining it highlights that rule.

wm

Figure 4

1

Figure 4.1

,. ,. ;.+,,'._+....

367

Figure4.2

Implementation of Intelligent Fault Disgnosis Using G2

As described before to create any instance, an object should be defined. So for the
S.S.M.E project in order to describe the project and to create icons which will have its own
workspaces, the utility icon, the documentatio-details and KB -details are defined (Figure 5). An
icon library is created as shown on the Figure 6, so that it will help the user to extend the system
whenever he wants. As shown on the workspace (definitions) on Figure 7, the icons are defined
from documentation-detail and KB-detail objects. On the subworkspace of "about-objects" we
have successfully implemented eight redline parameters (Figure 2). Then as described before the
instances for all these paramenters are created by defining the attributes on the subtables attached to
them (Figure 3). To give a nice idea about the instances of objects, a new workspace is created
and all the instances of redline parameters objects are defined on that workspace (Figure
4.2).Values for those instances of the objects are obtained using G2 simulator, inference engine
and data files simulating sensors..As descirbed before, each instance has its own subtable, which
has its own specific subtable where we defined our simulation formula as the abstract shown on
Figure 8 for H.POT redline parameter.

Figure 5

itl,41tw_t.I

368

Figure 6

._;'._.:.,taL P_E fS

_"7 ;_O_>_:/ QUALITY

,_mm,t imll_w

Figure. 7

Umlr_

i

OK

I

qlne

Figure 8

After making sure that all the redline parameters are getting values, rules are implemented.
The rule groups are devided into three parts: local rules, global rules and chained rules. Local rules
are implemented on the workspace attached to object definitions. Global rules relate two or me
things at a time and can be fired (Figure 9). Chained rules first try to get a conclusion from global
or local rules and then try to find another solution for that conclusion (Figure 10).

The rule base is traversed after each intermediate conclusion is reached until all possible

paths have been taken. Sometimes logical variables are used for some redline parameters like low.
OK, and high. The low, OK, and high variables have values attached with them. These are the
limitations for a particular instance. For example if the attribute dischargetemp of Ht_T is greater

than high or low or OK then after G2 f'tres the rule the operator can get the message. We have
implemented graphs as shown on Figure 11 to display the result of realtime systems by keeping a
history.

'n' 'OmW _"nm ,, I_ i

Do Ibm _¢_ _ ew

_ _ ILg_t4_4mm_.

m_ __ m_ m_m_.

Figure 9

369

r_-,.,-J

Figure 10

I

hMIf_

/_ t/ii i.,. j
:[I/ _i/ J
.L/.L i.L./;. J

,i,MIIl._m_ll q e IIWI_

Figure 11

370

OF POOR QUALITY

Through the message board of G2 the diagnostic system communicates to the operator.
When the diagnostic system f'tres the rules different kinds of messages appear on the message
board as shown on the Figure below

Figure 12

Currently the system contains approximately twenty-five rules which attempt to bind the
eight redline parameters. Historical data has been difficult to obtain and consequently that data
base has not yet begun to reach its size or pattern matching potential. Also, since the system is
currently operating as a stand-alone system and no sensor input is available, simulation and data
file supplied values are driving the system. Output is restricted to operator notification and
suggested corrective procedures by the system. Scan Intervals are well within one second, yet far
from the ultimate goal. These limitations are being slowly reduced and eventually it is hoped thex
will be removed entirely.

The S. S. M. E. real-line diagnostic system is a good start toward a viable tool. Currently.

even using G2, the system is much too slow and the rule and historical data bases are too limited
for it to ever be considered for an online control system. However, the system does show potential
as an analysis aid for engineers working with the S. S. M. E.

The next phase of the systems development will address these problems by increasing the
number of historical database entries as well as continued exploration into methods of speeding up
the programs execution. The primary objective of the project is to prove the feasibility of the
concept of an extended diagnostic system to S. S. M.E. In this respect the program i_,
succeeding.

C)_tCANAL PAGE IS

OF POOR QUALITY
371

REFERENCE_

I .

.

.

.

5.

.

.

Ali, M.,Schrnhorst, D.A."Sensor-based Fault Diagnosis in a Flight Expert System."
Proceedings of the Second Conference on Artificial Intelligence Applications, Miami
Beach, FL, December 11-13, 1985.

Firebaugh, Morris W.; Artificial Intelligence, "A Knowledge Based Approach." Published
by PWS-Kent, Boston.

Fox, Mark S., Lowenfeld, Simon and Kleinosky, Pamela "Techniques For Sensor-based
Diagnosis," Carnegie-Mellon University, The Robotics Institute Technical Report, 1983.

"G2 users manual" Version 1.1, 1988

Harmon, Paul and King,David "Expert Systems," Artificial Intelligence in Business; edited
by Theron Shrene, 1985.

Palmer, Michael T., Abbott,Kathy H., Schutte,Paul C. and Ricks, Wendell R.,

"Implementation of a Research Prototype On-board Fault Monitoring and Diagnosis
System," AIAA Conference of Computers in Aerospace, Massachusetts, 1987.

Schamhorst, Dean A."On the role of Artificial Intelligence In SSS Computer- aided
diagnosis ", The University Of Tennessee Space Institute, Knowledge Engineering
Laboratory

372

